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The work presents the results of preliminary strength design of a thin-walled structure based on double-tee 
section loaded with a torsion moment. One of the solutions to this problem is considered, in which the torsional 
box is introduced in the central part. Then, one constructs a series of solution variants that differ in the torsional 
box length. In the design one uses the method of statically admissible discontinuous stress fields (SADSF) 
assuming the condition of equalized equivalent stress in the limit state.  
The work is complemented with elastic FEM analyses of one of the solution variants. Using this example, one 
shows good load-carrying properties of structures designed with the SADSF method, and proves that they could 
be several times better than the properties of structures designed with traditional or intuitive ways.  
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1. Introduction  
 
 In this work, we present one of the solutions to the problem of preliminary strength design of a thin-
walled structure. Formulation of the problem is illustrated in Fig.1a. The data are [1, 2]: limit load P applied 
on the border Sp, reduced to two torsion moments: MY=2Ph, dimensions of this border (L, h, e) and yield 
point of material of the designed structure (y).  
 One assumes that the sought after structure should be based on a double-tee section, contain a 
torsional box in its central part and exhibit shape symmetry, among other things, with respect to the plane 
denoted AS1 (Fig.1c), which is one of antisymmetry planes for external forces.  
 An additional element in this work is the construction and analysis of the solution variants that differ 
in the length of one half of the box, t (Fig.1c).  
 The solution has been obtained with the use of the method of statically admissible discontinuous stress 
fields (SADSF [1-9]), which is based on the conclusions from the lower-bound theorem of limit analysis.  
 In the framework of this method, one looks for a statically admissible, discontinuous stress field, 
which is consequently equated with the designed structure.  
 Such a field satisfies the given boundary conditions, meets equilibrium equations at each point, and 
at no point does it disturb the assumed yield condition. In the SADSF method, one assumes that the sought 
after spatial field is built of fragments of plane fields, and the stress discontinuity lines are segments of 
straight lines, so they separate the areas of homogeneous stress state. When constructing the fields, one 
aspires to the fulfillment of the assumed yield condition in a possibly large number of areas.  
 The obtained field fully defines the designed construction, i.e., it defines both its structure, i.e., the 
number and spatial location of component elements and the system of their mutual connections [2], as well 
as geometry of these elements, i.e., their shapes and dimensions.  
 It is very difficult to undertake the task of designing and analyzing such fields in a direct way for a 
given system of boundary conditions. It leads to problems with nonlinear equations and inequalities that 
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contain singularities and have large numbers of unknowns [3]. However, the most important thing is that, 
when the networks of division into homogeneous areas are assumed arbitrarily, the solutions might not exist 
[3]. Then, we deal with problems of unknown discretization, and the system of conditions that must be set up 
is not known, either.  

 

 
 

Fig.1. Formulation of design problem, one of solution variants and libraries of the package SADSFaM  
a) formulation of design problem [1, 2]; b) ready-made library fields of the package SADSFaM [2] 
without stress discontinuity lines; c) one of variants of solution to the problem; statically admissible 
field obtained for t=41 [mm] with marked stress discontinuity lines; d) example fields from 
designer’s library [2]. 

 
 One managed to avoid these difficulties in the framework of the application version of the SADSF 
method [1, 2], which was created especially for engineers. It provides ready-made library fields (Fig.1b), 
which one may put together (like building blocks) creating more and more complicated systems.  
 In this work, we use the most advanced SADSFaM package of application version of the SADSF 
method, developed by W. Bodaszewski. It is based on the concept of multilevel approach to building 
complex fields [2], thanks to which one can simply and effectively design even very complicated thin-walled 

a) 

c) 

b) 

d) 
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structures. In this concept, ready-made library fields provided with the software package, such as the ones 
depicted in Fig.1b, are classified as fields of level I. These are fields of low degree of complexity, satisfying 
the defined boundary conditions and are divided in a particular way into homogeneous areas (see Fig.2) for 
which the existence of solution has been confirmed.  
 Using the library fields, the designer can build more complex fields (of medium degree of 
complexity), which make the fields of level II. These fields, accommodated to the problems that the designer 
deals with, create the designer’s library. The author of the package has already created several hundred of 
such fields, which satisfy diverse boundary conditions, and selected examples of which are presented in 
Fig.1d. The fields are consequently assembled to form the sought after solutions, which make the fields of 
level III and higher.  
 The effect of the assumed design criterion, which consists in the fulfillment of yield condition in a 
possibly large number of the areas, is that for the given boundary conditions one can sometimes find several 
solutions, and also – as it is shown in this work – to construct their variants that differ from one another in 
geometric parameters.  
 A series of such solution variants, obtained for different lengths of one half of the torsional box t, is 
presented in the following part of this work (Fig.4). One of the variants, obtained for t=41 [mm], is depicted 
in Fig.1c.  
 From among the obtained solution and their variants, one can select the cases that comply with some 
additional criteria. These may be, for example, associated with the lowest manufacturing costs, the lowest 
volume, or the best load-carrying properties.  
 As a certain 'fault' of the presented solution one can consider the fact that inner surfaces of the 
torsional box are not accessible from the outside, which can make it difficult to apply anti-corrosion 
protection. Examples of many other, interesting an original solutions to the problem from Fig.1a one can find 
in the monograph [2].  
 The work is complemented with the results of elastic FEM analyses of the solution variant shown in 
Fig.1c. Based on this example, we have shown good load-carrying properties of structures designed with the 
SADSF method. One could expect such properties, because they were confirmed by the analyses of several 
dozen of other thin-walled structures designed with the SADSF method [10, 11]. In this work, it is shown that 
these properties can be even a dozen or more times better that those of structures designed in traditional or 
intuitive ways.  
 It is worth noticing that:  

 problem formulation, similar to that presented in Fig.1a, is typically applied at the beginning of the 
design process, when one only knows the load carried by the construction, the yield point of material 
used to make it and functional requirements that the structure must fulfill;  

 the SADSF method is aimed at designing thin-walled structures built of plane elements; this is a 
particular class of structures, for which even a small change in boundary conditions or structural 
parameters (construction details) may cause radical changes in load-carrying properties (see, i.e., [2]); 
for this class of structures, one must exercise great caution when applying design methods based on 
iterative improvements, such as the commonly-used topology optimization methods [12-14];  

 in each library field, there is assumed realization of plane state of stress; thanks to this, the structures 
composed of such fields have the ability to carry the applied load with domination of the membrane 
state; this state is characterized e.g., by uniform distributions of stresses over the thickness of element 
walls, relatively low level of stresses and high rigidity; then, the designed constructions are well fit for 
the applied load and are free of cardinal errors, whose presence may cause that the forces would be 
carried with domination of the bending state and load-carrying ability would decrease several times; 
such errors are often encountered in constructions designed in traditional or intuitive ways;  

 the effect of applying the SADSF method is that we obtain a completely designed construction [1, 2], and 
we know in advance that it will have good load-carrying properties [2, 4-11]; such constructions can be 
accepted at once, and in the case of high-performance ones we can analyze and improve them by means of 
the FEM; possible corrections should only apply to geometry and must be introduced outside the contours 
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determined with the SADSF method, so as to avoid decreasing the assumed limit load-carrying capacity 
[6]; a change in structural parameters might radically worsen these capacities.  

 
2. Necessary information about SADSFaM package [2]  
 
 In the framework of application version of the SADSF method, the designer uses ready-made library 
fields (Fig.1c) which he/she assembles like building blocks to form more and more complex systems (see, 
i.e., Figs 1c-d). To construct the solution presented in this work, we used only four types of library fields, 
these are presented in a magnified scale in Fig.2 with marked stress discontinuity lines.  
 As it is seen, each of the field types is denoted with a symbol (here: Hp, Ns1, s1 and Ts) and is 
described in its own (local) system of coordinates {a1, a2}. Outer loads of the fields are defined by external 
stress parameters hi, which are the coordinates of stresses applied on the borders, whereas location of these 
borders is described by external geometric parameters zi, that have a character of linear dimensions.  

 

 
 

Fig.2. Library fields of SADSFaM package used in the presented solution. 
 

 Because the SADSFaM package makes use of the Treska yield condition, stress parameters on the 
borders of component fields are related to: k= y/2 = 150 [MPa].  
 The fulfillment of equilibrium equations on each stress discontinuity line causes that global 
equilibrium equations of the field are satisfied identically. For example, for the field s1 (Fig.2c) we obtain 
one such equation, which takes the form: z2h2 = z1h1. From what was mentioned it follows that not all 
external parameters hi and zi can be assumed independently. The parameters that are presupposed 
independent, the ones whose values are inputted in the package, are denoted with an asterisks in Fig.2.  
 A complex field, built of library fields, remains statically admissible if geometric and static condition 
of joining are satisfied. Geometric conditions require that the connected borders coincide, and static 
conditions consist in fulfillment of conditions of equality of mutual interactions on these borders.  
 In the cases of the simplest problems, solutions are constructed by directly connecting the library 
fields. However, this is a tedious and time-consuming task.  
 For this reason, in the cases of more complex problems, one first constructs fragments of solutions 
(e.g., fields of level II, see Fig.1d), which can consequently be multiplied and assembled to form ready 
solutions (fields of level III or higher). 
 In a complex field, each ready-made library field is given its own index s (drawn in rectangular 
rims), and thickness of the element is denoted (s). 
 

3. Construction of field in antisymmetric half of solution variant from Fig.1c  
 

 In the solution presented in this work, we used two fields of level II. These fields, constructed for 
t=41 [mm], are shown in Figs 3a and 3b.  
 There, thin arrows denote resultant interactions between component fields, and thick arrows 
symbolize resultant external reactions. 
 The first of the fields, used for construction of the solution in the areas adjacent to the borders Sp 
(Fig.1a) is denoted Ad_95a (the same as the name of the field’s data file). To build the field, it was enough to 
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find a solution for its antisymmetric half, which is presented in the upper part of Fig.3a. As we can see, it 
consists of two identical fields Hp that make up the flange, and the field Ns1 in the unloaded web. By 
assembling two such solutions, we have obtained the sought after field of level II, which defines the shape 
and dimensions of the flanges and the web of the double-tee section.  
 This solution is a version of the field denoted R_91c from Fig.1d [2]. In this solution, the number of 
fields Ns1 in the web was reduced, so as to limit the amount of data introduced when constructing the 
solution variants for diverse values of L-t.  
 The second field of level II, which defines the shape and dimensions of the construction in one half of 
the torsional box, was denoted Ad_95b. In this case, it was enough to solve only one antisymmetric quarter of 
it, which is shown in the upper part of Fig.3b. Here we applied four library fields: one field s1 and three fields 
Ts, which realize pure shear. The field of level II has been obtained by assembling four such solutions.  

 

 
 

Fig.3.  Field construction in antisymmetric half of solution to the problem from Fig.1a a) field Ad_95a that 
defines the shape and dimensions of web and flanges; b) field Ad_95b that defines the shape and 
dimensions of elements within torsional box; c) field R_95 that makes one half of solution to the 
problem from Fig.1a; d) location of component library fields, loads applied to fields and thicknesses 
of their elements in the upper half of field R_95.  

 

 Putting together the fields Ad_95a and Ad_95b, as it is shown in Figs 3a and 3b, one obtains the 
solution R_95 depicted in Fig.3c, which constitutes one half of the solution to the problem formulated in 
Fig.1a and presented in Fig.1c.  
 The presented drawings are, in majority, screen dumps of images obtained from the SADSFaM 
package complemented with dimensioning and additional denotations; they are legible for the user of the 
package, but, among other things, they do not contain any numerical data.  

a) 

c) 

b) 

d) 
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 Because of that, details of the presented solution variant are shown in Fig.3d in a picture drawn with 
the use of a graphical editor. There are shown locations of component library fields in the upper half of the 
solution R_95, arrows that symbolize loads and values of loads applied to fields, enumeration of component 
fields and their determined thicknesses. Interaction values and dimensions marked on the drawing may be 
easily associated with external parameters of the applied library fields from Fig.2.  
 Independent geometric parameters result from the given dimensions: L, h, e, the assumed dimension 
t, and geometric conditions of joining. Inputting these parameters and their correctness can be easily 
controlled on the display of field drawing on the monitor screen (transformation matrices that define spatial 
location of component fields are not discussed in this work).  
 It should also be added that, in the package SADSFaM, for the field Hp one assumes that: z3= 2z1

* 
(Fig.2a). It is so because, with the assumed length of the border Sp equal to 2e, the width of the torsional box 
will in each case be the same, and be equal to 4e (see Fig.3a).  
 It is worth noticing that the value of shear stress  applied on the edges Hp adjacent to the border Sp, 
corresponds to the parameter h1 of this field and is not assumed independently. When it is defined, then, after 
inputting independent parameters of fields Hp, one can determine thickness of elements of these fields: (1) = 
(2) =, using the formula: MY = 2Ph = 2(2e)h.  
 Thicknesses of elements of the remaining fields are calculated from static conditions of joining. In 
the package SADSFaM, these conditions are automatically set up and solved. For example, for the common 
border between the fields Hp (s=1), s1 (s=7) and Ts (s=8, 10) these conditions take the form 
 

  (1.9802k) (1) – (1.99206k) (7) =0, 
 

  (0.19802k) (1) + (1.0k) (8) – (1.0k) (10) =0.  
 

 The total thickness of the flange within the torsional box is obtained summing thicknesses of 
elements of the fields s1 (s=7) and Ts (s=8): p= (7) + (8) (layer superimposition was not used [1, 8]).  
 Only for the web, where the field type Ns1 (s=3) and a zero state of stress is assumed, can one 
assume the element’s thickness arbitrarily. It is accepted that its thickness is the same as that of flange 
elements, and equals (3) = . The web’s only role is 'to support' geometry, and because it is unloaded, one 
can – without any loss in load-carrying capacity – arbitrarily make holes in it.  
 It is worth analyzing here statically admissible forces, both the forces applied to component library 
fields and the resulting external reactions of fields of level II. As it is seen from Fig.3a, a bimoment appears, 
and its value rises as the distance from the edges adjacent to Sp increases. Consequently, it is transmitted to 
the torsional box and 'locked' in it (Fig.3b). As we can see, in the cross-section AS1 (Fig.3c) the bimoment 
equals zero, because in this section there are not any perpendicular reactions which might create such a 
bimoment. In this section, forces from the flanges produce a torsion moment Mp, while the forces acting on 
the webs (perpendicular elements of the torsional box) create the moment Ms.  
 The flanges are bent in their planes. So, in the elastic range, axes of bending will appear in these 
elements, and the stresses will increase with increasing distance from the axes. One can expect that the elastic 
equivalent stress will only be equalized along the free borders, whereas uniform distributions of elastic 
equivalent stress can be expected in elements of the torsional box, where the state of pure shear is assumed.  
 

4. Selected solution variants  
 

 The analysis of domains of independent external parameters of used library fields has shown that the 
solution to the problem under consideration can be built for the dimension t changing within very large 
limits. In this work, the solution was found in the range: 20 ≤ t ≤ 240 [mm].  
 Selected examples of solution variants obtained for: t=30, 120, 175 and 239 [mm] are presented in 
Figs 6a-d. For each field, there are shown external loads, thicknesses of field elements and the total volume 
of the field.  
 It is worth directing our attention to external reactions of these fields in the planes denoted AS1 in 
Figs 4a-d. Senses of reactions on the flange edges are, for t < 120, the same as those of forces applied to the 
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border Sp (see Figs 3c and 4a). For t≈120 these forces take zero values (Fig.4b) – which is due to the 
obtained zero thickness of the field elements Ts (s=8, 12) from which these forces result (see Fig.3d). For 
t>120 the forces take opposite senses, similarly as the senses of stresses in the fields Ts. As it is shown in 
Fig.4e, the values of moments: Mp and Ms (see Fig.3) grow very quickly when the length of one half of the 
torsional box decreases. For t=20 [mm] they are 5-6 times greater than the loading moment MY. The most 
advantageous values of these moments take for t values close to L.  
 

 
 
Fig.4.  Example solution variants and results obtained. a, b, c, d) solution variants obtained for selected values of 

dimension t; e) courses of moments Mp and Ms referred to MY, in the function of dimension t; f) obtained 
thicknesses of component field elements versus dimension t; g) field volume versus dimension t. 

 
 We have also analyzed thicknesses of component fields. It is worth standardizing them, in order to 
lower manufacturing costs. The calculated courses of thicknesses versus dimension t are presented in Fig.4f. 
As one can see, for t<40 the flange thickness p in the torsional box area grows rapidly, whereas for t>235 
the thickness of flanges outside the torsional box (1) exhibits a rapid growth. In the range 100<t<175, the 
thicknesses of elements (1) and p are very close to one another. Then, we can assume that these elements 
have the same thickness, equal to the greater of the two.  
 The thicknesses of elements that compose the torsional box are equal: (9) = (10) and decrease with 
growing t. When t approaches L, the thickness of these elements tends to that of the flanges in the torsional 
box area, p.  

c) 

e) 

a) 

g) f) 

d) 

b) 
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 The function of field volume V versus t, which also represents the weight of the construction, is 
presented in Fig.6g. As it is seen, this volume decreases with the increase in length of one half of the 
torsional box, t.  
 The increase in dimension t causes a decrease in the length of the fields Hp in the flanges, which are 
bent in their planes. So, the value of bimoment introduced to the torsional box decreases. Yet, the dimensions 
of the fields Ts that realize pure shear increase, and the solution tends to a rectangular, torsional pipe of equal 
thicknesses of all component elements. The presence of the fields Hp causes that the torsional box width is 
twice greater than the border length Sp. If these fields are removed from the solution, we obtain the solution 
presented in Fig.5a. It consists of eight fields Ts, which have elements of equal thickness, and form a 
rectangular pipe closed with the fields Ts (s=4, 8). The locations of library component fields in the upper 
half of this solution, arrows that symbolize loads and values of loads applied to the fields, enumeration and 
the determined thickness values of component fields are presented in Fig.5b.  

 

 
 

Fig.5. One half of the solution to the problem from Fig.1a in the form of torsional, rectangular pipe.  
 
5. Selected results of elastic FEM analyses  
 
 Experimental and numerical verification of properties of constructions designed with the SADSF 
method has been carried out since the very beginning of existence of this method, because the method is an 
approximate one. In it, one makes use, among other things, of a rigid-ideally plastic material model, analyses 
only limit state of the structure corresponding to the beginning of its collapse, and assumes that, when the 
collapse occurs, a plane state of stress is maintained in each component element. Then, the elastic and 
elastic-plastic ranges are not taken into account, and bending states and phenomena associated with the loss 
of stability, etc., are not considered either.  
 However, the results obtained so far indicate surprisingly good load-carrying properties of the 
designed constructions in all stages of loading [2, 4-11], including the elastic range, in which the 
constructions usually work.  
 These properties have also been confirmed by the results of FEM analyses carried out by the author 
on numerous examples described, e.g., in the work [11]. In the SADSF-designed thin-walled structures, we 
have found, among other things, domination of membrane state, relatively well equalized level of equivalent 
stress – both along free borders and in large fragments the volume – and load-carrying properties radically 
better than such properties of systems whose structures are not properly designed for the applied load.  
 The results obtained for the presented solution variants confirm the above-mentioned good load-carrying 
properties. Then, in this work, we limited the presentation of results to just one case of the solution from Fig.1c. 
The results are shown together with those obtained for a model based on a regular, double-tee section, which was 
not designed with the SADSF method, and whose structure is not fit for torsional moment load.  
 The comparison of results obtained for the two models allowed us to show, among other things, what 
could be the advantage of applying the SADSF method to the design of thin-walled structures.  

a) b) 
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 In the analyses, we have used the CosmosM package. We have applied a shell model and triangular 
elements type SHELL6 with six nodes and six degrees of freedom in a node. We have also assumed, among 
other things, small displacements and strains and linearly-elastic model of the material.  
 The shapes and dimensions of the analyzed models, as well as the assumed boundary conditions, are 
presented in Figs 6a and 6b. As it is seen, we considered only quarters of the constructions, assuming 
adequate geometric boundary conditions in the antisymmetry planes denoted AS1 and AS3. The torsional 
moment was introduced in the membranes p1 and p2 by means of forces applied to the nodes lying on the 
edges of holes.  
 In the SADSF model (Fig.6a), we introduced some obvious corrections to geometry, which consisted 
in: increasing widths of the flanges by 5 [mm] beyond the torsional box, assuming constant flange thickness 
equal to 1.4 [mm] (see Fig.3d), and making holes in the unloaded web. The load value F was assumed so as 
to obtain a moment equal to one half of the value assumed in the design.  

 

 
 

Fig.6. Assumed shapes, dimensions and boundary conditions of analyzed models, and obtained distributions 
of equivalent stresses calculated based on the Huber-Mises criterion.  

 
      The distribution of equivalent stress, obtained for this model, is shown in Fig.6c, where one can see:  

- relatively well equalized equivalent stress along free borders of the flanges, and small stresses in their 
central part (in the torsional box area);  

- very good level of equalization of equivalent stress in the elements of the torsional box, where pure 
shear was assumed in the statically admissible field;  

- absence of load in the web, in which a zero state of stress was assumed.  
 We have found domination of the membrane state – the greatest equivalent stress related to the 
membrane state is almost twice greater than the maximal stress of bending state (352/188 ≈ 1.9). 

a) b) 

c) d) 



88                                                                                                                                                                     I.Markiewicz 

 Rigidity of this model equals: =M/ ≈ 1120 [Nm/deg]; where M – value of applied torsional 
moment,  – rotation angle of upper edge of membrane p1 calculated based on displacement values of its 
extreme nodes.  
 In the case of the double-tee section model, we assumed constant width of the flanges equal to the 
torsional box width. To ensure that the amount of material is approximately the same as in the SADSF 
model, we assumed the same thickness for all elements in this model, equal to 1.1 [mm] (Fig.6b). In order to 
make the maximum value of total equivalent stress equal to that in the SADSF model, we had to decrease the 
load value F as much as 15 times.  
 Such a great difference in the applied load values results from the fact that the structure designed 
with the SADSF method carries the applied load with domination of the membrane state. Such a possibility 
does not exist in the regular double-tee section. In this case, the bending state is the dominating one – the 
greatest equivalent stress originating from bending state is more than twice greater than that obtained for the 
membrane state (309/138 ≈ 2.24). 
 The rigidity of the regular double-tee section model equals:  ≈ 9 [Nm/deg] and is about 124 times 
(1120/9 ≈ 124) smaller than that of the model designed with the SADSF method.  
 
6. Summary  
 
 In this work, we have shown the simplicity and effectiveness of design of thin-walled structures by 
means of the application version of the SADSF method, and demonstrated easiness of constructing their 
variants. The method has the potential to find wide application in practice, already in the phase when only 
boundary conditions are known.  
 The package SADSFaM, applied in this work, is user-friendly and has no limitation on the 
complexity of designed systems. To obtain the solution, it is enough that the designer shows inventiveness in 
selecting and assembling the library fields, and is familiar with the concept of equilibrium.  
 The condition of equalized equivalent stress, assumed in the SADSF method, is ambiguous, and 
sometimes allows us to construct several solutions for the given boundary conditions [1, 2], as well as 
finding solution variants differing in geometric parameters. From among them, we can select the ones which 
meet some additional criteria, associated, e.g., with manufacturing costs or strength. The additional criteria 
can be taken into account already at the stage of selecting and assembling library fields, which is very useful 
in practical applications [2].  
 Preliminary projects of constructions, obtained with the use of the SADSF method, have the 
structures fit for the applied loads, and are free of cardinal errors. Therefore, their load-carrying properties 
might be radically better than the properties of systems designed with traditional methods. The systems 
designed with the SADSF method can, in most cases, be accepted at once. Only in a few cases they need 
improvements in geometry.  
 
Nomenclature  
 
 AS1, AS2, AS3 – planes of shape symmetry of field/structure and planes of antisymmetry of external forces 

perpendicular to respective axes x1, x2 and x3 of the global coordinate system 
 {a}  – own, local coordinate system of a library field 
 F – resultant force applied on the hole edge in the membrane of the MES model [N] 
 hi  – stress parameters of library fields that are dimensionless (referred to k) coordinates of stress 

vectors acting on the borders; asterisk denotes parameters assumed as independent 
 k – k= y/2 [MPa] 
 L, h, e  – dimensions defining the border Sp [mm] 
 M  – torsional moment applied to the FEM model [Nm] 
 Ms  – torsional moment resulting from reduction of forces acting on the webs in the plane AS1 [Nm]  
 Mp  – torsional moment resulting from reduction of forces acting on the flanges in the plane AS1 [Nm] 
 MY  – limit torsional moment [Nm] 
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 P  – limit load applied on the border Sp [N] 
 Sp  – loaded part of statically admissible stress field's border 
 s  – index of component library field 
 t – length of one half of the torsional box [mm] 
 V – volume of field/model [mm3] 
 {x} – global coordinate system 
 zi  – geometric parameters of library fields defining location of loaded borders and having a character 

of linear dimensions; asterisk denotes parameters assumed as independent [mm] 
   – border Sp thickness [mm] 
 (s) – thickness of component library field with index s [mm] 
 p  – total thickness of the flanges within the torsional box [mm] 
   – rigidity of the model [Nm/deg] 
 max – maximal equivalent stress [MPa] 
 y  – yield point of material of the designed structure [MPa] 
   – shear stress acting on the border Sp [MPa] 
  – rotation angle of membrane [deg] 
 
References  
 
[1] Bodaszewski W. and Szczepiński W. (2005): Shaping structure elements by the method of discontinuous stress 

fields.  Warsaw: BEL Studio, PWN (in Polish).  

[2] Bodaszewski W. (2013): Statical analyses and shaping of complex thin-walled structures.  Warsaw: BEL Studio (in 
Polish).  

[3] Bodaszewski W. (2004, 2005): Algorithms of the method of statically admissible discontinuous stress fields 
(SADSF).  Engineering Transactions, vol.52, No.3, pp.175-193; vol.52, No.4, pp.281-302; vol.53, No.1, pp.15-
30; vol.53, No.2, pp.119-131.  

[4] Dietrich L., Miastkowski J. and Szczepiński W. (1970): Load-carrying capacity of structural elements.  Warsaw: 
PWN (in Polish).  

[5] Frąckiewicz H. et al. (1985): Joints and Structural Connections.  Warsaw: WNT (in Polish).  

[6] Szczepiński W. (1968): Plastic Design of Machine Parts.  Warsaw: PWN (in Polish).  

[7] Szczepiński W. and Szlagowski J. (1990): Plastic design of complex shape structures.  Warsaw - Chichester: 
Ellis Horwood and PWN.  

[8] Szlagowski J. (1990): Methodology of strength design of structural elements according to the limit load carrying 
capacity criterion.  IFTR Reports, 25 (in Polish).   

[9] Zowczak W. (2004): Strength design by means of slip-line method.  MONOGRAFIE, STUDIA, ROZPRAWY 
M-41, Wydawnictwo Politechniki Świętokrzyskiej, Kielce (in Polish).  

[10] Markiewicz I. (2007): Analysis of elastic effort fields in truck frame designed by the SADSF method.  
Eksploatacja i Niezawodność - Maintenance and Reliability, vol.2, No.34, pp.22-27.  

[11] Markiewicz I. (2013): Investigating the behaviour of structures designed with the SADSF method.  
MONOGRAFIE, STUDIA, ROZPRAWY M47, Wydawnictwo Politechniki Świętokrzyskiej, Kielce (in Polish).  

[12] Bendsoe M.P. and Sigmund O. (2003): Topology Optimization: Theory, Methods, and Applications.  Springer.  

[13] Huang X. and Xie Y.M. (2010): Evolutionary Topology Optimization of Continuum Structures. Methods and 
Applications.  Willey.  

[14] Mróz Z. and Bojczuk D. (2003): Finite topology variations in optimal design of structures.  Structural and 
Multidisciplinary Optimization, vol.25, No.3, pp.153-173.  

 

Received: May 10, 2018 

Revised:   November 13, 2018 


